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Abstract

A finite element method based on bicubic Bézier surfaces is applied to the simulation of MHD instabilities relevant to
magnetically confined fusion. The major advantage of the new technique is that it allows a natural way to implement mesh
refinement strategy, which is not supported by a pure Hermite formulation. Compared to a Lagrangian formulation the
number of degrees of freedom is significantly reduced. The use of an isoparametric representation of the space coordinates
allows an accurate alignment of the finite elements to the magnetic field line geometry in a tokamak plasma. The Bézier
finite elements have been implemented in a MHD code using the non-linear reduced MHD model in toroidal geometry. As
an illustration, results for Soloviev equilibrium and time-dependent current-hole computations are presented and
discussed.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The understanding of magnetohydrodynamic (MHD) instabilities is quite essential for the optimization of
magnetically confined plasmas. For instance, the standard ITER scenario is expected to generate oscillations
in the plasma core (internal kink instabilities), modes around the outward limit of the plasma confinement zone
(Edge Localized Modes, or ELMs), or local reconfiguration of the magnetic field topology into closed islands
(tearing modes) (ITER Group [1]). When occurring, MHD instabilities are likely to degrade confinement
properties and to trigger particle bursts that may significantly damage components of tokamak walls. The con-
trol of the instabilities is one of the ITER-building challenges (Evans et al. [2], Nardon et al. [3]).

Numerical simulations play an important role in the investigation of the non-linear behaviour of these
instabilities and the interpretation of experimental observations. Some features should be emphasized in
non-linear MHD code developments. First the MHD instabilities are radially localized and related to strong
current sheets; therefore, the possibility to locally increase the number of nodes through mesh refinement
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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could be helpful. It is also necessary to handle realistic geometries that take into account both the plasma core
and the plasma boundary – the ‘‘scrape-off layer”-. Moreover, the large gap between the different time scales
relevant to plasmas – from the Alfvèn time1 (10�6 s) to the equilibrium time scale (1 s) – makes it necessary for
a code to perform integrations within acceptable computing times.

The parallelized 3D MHD code named JOREK in under development as a first step toward this objective
(Huysmans [4,5]). The code is based on 3D generalized finite elements that provide some flexibility to the
choice of geometries. To date, JOREK solves the reduced non-linear MHD equations, derived from the full
MHD model, by means of a linear finite element interpolation in the vertical (poloidal) plane, the periodic
toroidal direction being treated via a sine/cosine expansion.

While acceptable for the study of fundamental mechanisms, the reduced MHD model does not prove ade-
quate enough for finer comparisons with realistic experiments in tokamaks. A switch to the full MHD equa-
tions is necessary, which subsequently means a significant increase in the number of variables. As memory is
the main limiting factor on computing machines, the introduction of new unknowns and new equations must
come with an effort to improve the code efficiency. In particular, we aim at optimizing the number of degrees
of freedom required to obtain a prescribed level of accuracy. More specifically, we are looking at higher
degrees of interpolation coupled to adaptive mesh refinement.

Lagrangian elements are a possible choice, like in the non-linear MHD code NIMROD (Sovinec et al. [6]).
These elements are conforming, that is, continuity of order 0 between elements is verified along edges and not
only at the nodes of the mesh. With Q3 elements (quadrilateral shape, cubic interpolation), each physical var-
iable needs nine degrees of freedom per node. Providing the same degree of interpolation, bicubic Hermite
quadrangles are an interesting alternative, with only four degrees of freedom per node (three of them convey
information about derivatives), and continuity for gradients across element boundaries; besides regularity
improvement regards, continuity of gradients takes full importance in applying stabilizing methods such as
Galerkin Least Squares techniques, where access to second-order derivatives is necessary. Bicubic Hermite ele-
ments are implemented in the equilibrium code HELENA (Huysmans et al. [7]). On the other hand, these ele-
ments are not appropriate to mesh-refinement strategies as the Hermite formulation cannot deal with the
parametric change between refined and unrefined elements.

The use of triangular finite elements with C1 continuity has been described in (Jardin [8]). Using a reduced
quintic formulation yields three degrees of freedom per node. The applications to some MHD problems con-
firms the expected convergence rates for the higher order finite elements.

In this paper, we focus our attention on Bézier surfaces, for which Hermite patches turn out to be a special
case. Coupled with additional regularity conditions, a finite element problem written under Bézier formalism
can still ensure continuity for gradients across refined grids with only four degrees of freedom per node. Finite
elements and Bézier interpolation have been previously used in simulations, e.g. for facial surgery (Roth et al.
[9]), though in this case, the elements were triangular and the interpolation was subparametric (linear interpo-
lation of the geometry and higher order of interpolation for the physical quantities). Here, we apply an iso-
parametric mapping, that is, the same order of interpolation for the geometry and the physical unknowns.
The isoparametric mapping becomes important when the finite element grid is aligned with the magnetic field
line structure in tokamak plasmas.

The paper is organized as follows: Section 2 reviews properties of Bézier surfaces and addresses the problem
of continuity between adjacent elements. We give in Section 3 a description of the finite element discretization
and establish the number of degrees of freedom required per node; the section ends with details about the mesh
refinement method. Finally, after detailing time-stepping and geometric modelling, Section 4 presents two
MHD benchmarks: the Soloviev equilibrium and the ‘‘current-hole” internal kink instability.

2. About Bézier surfaces

Pierre Bézier (1910–1999) worked as an engineer for the French car manufacturer Renault (Bézier [10,11]).
In the 1960s, Computer Aided Manufacturing (CAM) became more and more important for car drilling and 3D
1 Characteristic time for shear perturbations of the magnetic field to propagate.
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milling. In this context, Bézier developed an original method to represent curves with a formalism understand-
able to the computers controlling the machines. This pioneering work gave birth to the UNISURF Computer
Aided Design (CAD) software. Today, Bézier objects are found in most drawing software packages or, even
more commonly, in vector fonts such as TrueType or Postscript.

2.1. Definitions and properties

Bézier objects are constructed with a particular family of interpolating polynomials which were first
described by the Russian mathematician Sergei Bernstein (1880–1968). Bernstein dedicated part of his work
to the theory of best approximation of functions. In 1911 he gave a proof of Weierstrass’s theorem – which
states that any continuous function defined on a real interval is the uniform limit of a polynomial sequence
(Bernstein [12]). The proof, based on a probabilistic approach, calls upon polynomials ðBn

i Þ defined as:
Bn
i ðsÞ ¼ Ci

nsið1� sÞn�i
;

Ci
n ¼ n!

i!ðn�iÞ! ;

0 6 i 6 n:

8><>: ð2:1Þ
Bernstein polynomials exhibit some properties, e.g.:

– ðBn
i Þ is a basis of Pn, the vector subspace of polynomials whose degree is lower or equal to n.

– 0 6 Bn
i ðsÞ 6 1, for each s2 [0; 1].

– ðBn
i ) is a partition of unity, that is:

Pn
i¼0Bn

i ðsÞ ¼ 1; 8s 2 ½0; 1�.

The simplest Bézier objects correspond to curves defined via the parametric representation:
P ðsÞ ¼
Xn

i¼0

P iBn
i ðsÞ; 0 6 s 6 1; ð2:2Þ
where (Pi) = (xi,yi,zi) are control points belonging to the 3D space where coordinates are expressed with re-
spect to the usual orthonormal frame of reference; the curve is physically 3D but one parameter only (the cur-
vilinear coordinate s) is required to locate a point on the curve. In the most widespread cases, degree n is set to
3, yielding the following cubic basis:
B3
0ðsÞ ¼ ð1� sÞ3;

B3
1ðsÞ ¼ 3ð1� sÞ2s;

B3
2ðsÞ ¼ 3ð1� sÞs2;

B3
3ðsÞ ¼ s3:

8>>>><>>>>: ð2:3Þ
The basis is plotted for illustration in Fig. 2.1.
Fig. 2.1. Plots of Bernstein cubic polynomials ðB3
i Þ.
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The curve shape depends directly on the location of the control points, as shown on Fig. 2.2 for the par-
ticular case where the (Pi) belong to a common 2D plane.

Bézier curves are naturally extendable to bicubic rectangular patches via the next parameterization:
Fig. 2.
corner
P ðs; tÞ ¼
X3

i¼0

X3

j¼0

P i;jB3
i ðsÞB3

j ðtÞ; 0 6 s; t 6 1: ð2:4Þ
Fig. 2.3(a) displays an example of a bicubic Bézier patch. By switching parameters s and t to 0 or 1 in Eq. (2.4),
one can notice quite straightforwardly that edges of the surface are Bézier curves.

The definition of a bicubic Bézier surface involves 16 control points which can be evenly distributed into
four sets, each set associated with one of the four corners of the patch. Fig. 2.3(b). zooms around one corner
of the surface: apart from the vertex (P0,0), one can identify tangent points (P1,0 and P0,1), and a twist point

(P1,1). Denominations of non-vertex points stem from direct relations between the points and parametric
derivatives calculated at the vertex. Still considering P0,0 corner for instance, these relations – derived from
(2.4) – write:
oP
os

� �
ðs;tÞ¼ð0;0Þ

¼ 3ðP 1;0 � P 0;0Þ;

oP
ot

� �
ðs;tÞ¼ð0;0Þ

¼ 3ðP 0;1 � P 0;0Þ;

o2P
osot

� �
ðs;tÞ¼ð0;0Þ

¼ 9ðP 1;1 þ P 0;0 � P 0;1 � P 1;0Þ:

ð2:5Þ
Fig. 2.2. Two examples of Bézier curves, where P i 2 R2; 0 6 i 6 3.

3. Bicubic Bézier surface, where P ij 2 R3. (a) General view of the surface showing the net of 16 control points; for clarity, only
s are labelled. (b) Close-up around vertex P0,0.
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In other words, edges P0,0P3,0 and P0,0P0,3 of the patch are tangent at P0,0 to (P0,1 � P0,0) and (P1,0 � P0,0),
respectively. P1,1 as for it is associated with the cross-derivative (o2P/osot) which plays an important role for
continuity across edges, as detailed in Section 2.2.

2.2. Continuity between adjacent Bézier patches

Since the 1970s, many papers have been devoted to the topic of edge continuity (Ueshiba & Roth, [13] Ma
& Peng [14], Liang et al. [15], Kiciak [16], De Rose [17]). This issue is quite important for image smoothing
applications, it is moreover crucial to ensure some regularity for computed fields within the frame of finite
elements simulations.

Let us consider two Bézier surfaces S and S0 as depicted on Fig. 2.4. Using parameterization of surface S,
the equation of the common edge writes:
Fig. 2.
for sur
EðtÞ ¼ Pð1; tÞ ¼
X3

j¼0

P 3;jB3
j ðtÞ; ð2:6Þ
rewritten as follows with surface S0 notation:
E0ðt0Þ ¼ P 0ð0; t0Þ ¼
X3

j¼0

P 00;jB
3
j ðt0Þ: ð2:7Þ
A first level of continuity is reached when E(t) = E0(t0), "t = t0. Equating (2.6) and (2.7) and using linear inde-
pendence of Bernstein polynomials leads to:
P 3;j ¼ P 00;j; 8j ð2:8Þ
that is: surfaces S and S0 share the same control points along the common edge. In this case, continuity is said
to be geometric of order 0 (G0). The join is equivalently said to be parametric (written C0) as equality of param-
eters t and t0 leads to P = P0 on the edge. Through (2.8) we also have equality of the tangent vectors associated
to direction t:
4. G0(C0) continuity between two adjacent Bézier patches. Continuity is achieved when surfaces share the same control points (P3,j

face S, P 00;j for surface S0) along the boundary.
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oP
ot

� �
s¼1

ðtÞ ¼ oP 0

ot0

� �
s0¼0

ðt0Þ; 8t ¼ t0: ð2:9Þ
The next order of continuity (G1) needs continuity of surface gradients in addition to G0 assumptions. This
requirement is also known as ‘‘tangent plane condition” (Ueshiba & Roth [13], De Rose [17]). Let us consider
a point P(=P0) located on the common boundary E(=E0). The plane P tangent to surface S at P is generated
by a basis of two vectors: (oP/os) and (oP/ot). Similarly, the plane P0 tangent to surface S0 at P0(=P) is gen-
erated by (oP0/os0) and (oP0/ot0). The join between the patches fulfils the tangent plane condition if P = P0

along the edge. As G0 continuity provides (oP/o t) = (oP0/ot0) – see (2.9) – the condition reduces to enforcing
coplanarity of (oP/o s), (oP/ot) and (oP0/o s0) at any point of the common edge: for each P(t) on the edge, one
can find real numbers k1(t), k2(t)k3(t) so that:
k1ðtÞ
oP
os

� �
þ k2ðtÞ

oP
ot

� �
þ k3ðtÞ

oP 0

os0

� �
¼ 0: ð2:10Þ
Various formulations of necessary and sufficient conditions to meet requirement (2.10) can be found in Liang
et al. [15], Liu [18]. For the present study, we reduce the practical sufficient condition detailed by Liu [18] to the
specific case where control points are aligned across the boundary, as shown on Fig. 2.5. In this setting, the
following homothetic relations hold:
9kj 2 R=P 3;j � P 01;j ¼ kjP 2;j � P 3;j: ð2:11Þ
Each derivative of Eq. (2.10) are consequently rewritten as:
oP
os

� �
s¼1

¼
X3

j¼0

3ðP 3;j � P 2;jÞB3
j ðtÞ; ð2:12Þ

oP 0

os0

� �
s0¼0

¼
X3

j¼0

3kjðP 3;j � P 2;jÞB3
j ðtÞ; ð2:13Þ

oP
ot

� �
s¼1

¼
X3

j¼0

P 3;j

dB3
j

dt
ðtÞ: ð2:14Þ
5. Alignment condition for G1 continuity between surfaces S and S0. Dashed lines illustrate how points must be aligned across the
ary. Homothetic parameter k is constant along the boundary (k = �2 in this example).
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Choosing k2(t) = 0 and invoking again the linear independence of the polynomial basis yields:
Fig. 3.
are ali
the pr
Qi,j = M
kj ¼ k; 8j ð2:15Þ

with k an arbitrary constant coefficient. Finally, the alignment condition to get G1 continuity writes:
P 3;j � P 01;j ¼ kP 2;j � P 3;j 8j 2 f0; . . . ; 3g: ð2:16Þ
We retain subsequently this condition for our formulation of the finite element problem. At this point, one
may remark that setting k = 1 leads to the Hermite formulation. In this case, continuity of order 1 is paramet-
ric – quantities (2.5) are continuous across the edge.

3. Finite element method

3.1. Bézier formalism

3.1.1. Degrees of freedom required per node

The problem at stake in the present section is that of a field w(x,y) defined over a 2D geometrical domain D
and G1-interpolated through Bézier surfaces. Let us focus at a corner, where 4 Bézier patches meet (see
Fig. 3.1). It is therefore possible to define for the corner a set of 9 control points that can be described in a
frame of reference local to the corner.

We consider the parametric surface P as defined in (2.4), taking P = (x,y,w) in a Cartesian frame of refer-
ence (0, ex,ey,ef). Direction f is that of the values for w and therefore is not a physical space coordinate like x

or y. We shall note that the Bézier interpolation for P apply with the same coefficients to space coordinates
(x,y) and field w, in this case the finite element method is said to be iso-parametric.

Let (xi,j,yi,j,wi,j) be the coordinates of Pi,j, (i, j) 2 {�1;0; + 1}2. We call Mi,j the projection of Pi,j on plane
(O,x,y) (see Fig. 3.1(a)): Mi,j = (xi,j,yi,j, 0). The Mi,j are the control points of a Bézier grid on which the finite
element method will be performed.
1. Corner between four Bézier patches with G1 continuity. (a) 3D view of the surface w(x,y). The control points of the surface (Pi,j)
gned according to condition (2.16). The thick black lines show the boundaries between the patches. Below the surface, the Mi,j are
ojection of the Pi,j onto plane (x,y). (b) View of plane (x,y) from the top, showing the local vector basis. Qi,j are defined as

i,0 + M0,j, i, j = ±1. The twist points M±1,±1 are translated from the Q points, with respect to the direction fixed by vector ~w0;0.
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From that point, we assume that the mesh is given, i.e. the (xi,j,yi,j) are known. The nine values (wi,j) are the
degrees of freedom (dof) for w at one node. The number of dof can be decreased by adding the G1-continuity
constraint (2.16), which writes – using notations of Fig. 3.1(a):
P 1;j � P 0;j ¼ ksP 0;j � P�1;j 8j 2 f�1; 0; 1g;
P i;1 � P i;0 ¼ ktP i;0 � P i;�1 8i 2 f�1; 0; 1g:

ð3:1Þ
Due to points alignment and using geometrical properties, we can write:
w1;0 � w0;0 ¼ a0;0du;1 with du;1 ¼ M1;0 �M0;0k k;
w�1;0 � w0;0 ¼ a0;0du;�1 with du;�1 ¼ � M�1;0 �M0;0k k;
w1;0 � w0;0 ¼ ksw�1;0 � w0;0;

ð3:2Þ
where a0,0 is the tangent of angle (P1,0 � P0,0,M1,0 �M0,0). Similarly:
w0;1 � w0;0 ¼ b0;0dv;1 with dv;1 ¼ M0;1 �M0;0k k
w0;�1 � w0;0 ¼ b0;0dv;�1 with dv;�1 ¼ � M0;�1 �M0;0k k
w0;1 � w0;0 ¼ ktw0;�1 � w0;0

ð3:3Þ
with b0,0 as the tangent of angle (P0,1 � P0,0,M0,1 �M0,0).
As far as the twist points are concerned, we define ~wi;j ¼ P i;j þ P 0;0 � P i;0 � P 0;jði; j ¼ �1). Still referring to

geometrical properties, one can prove that:
~wi;j ¼
du;i

du;k
~wk;j; ~wk;j ¼

dv;i

dv;l
~wk;l; 8i; j; k; l ¼ �1; ð3:4Þ
yielding the existence at the corner of a vector independent from the local twist points:
1

du;idv;j
~wi;j ¼

1

du;kdv;l
~wk;l ¼ ~C; 8i; j; k; l ¼ �1: ð3:5Þ
Therefore, calling c0,0 the third coordinate of ~C, we obtain:
wi;j þ w0;0 � wi;0 � w0;j ¼ c0;0du;idv;j 8i; j� 1: ð3:6Þ
Consequently, only four degrees of freedom (w0,0,a0,0,b0,0,c0,0) (instead of nine) are necessary to determine all
the control points associated with vertex P0,0. This result is not surprising given the equivalence with the bic-
ubic Hermite method (see end of Section 2.2). The extrapolation from the dof. to values other than w0,0 is per-
formed through the relation summarized below for convenience:
wi;0 ¼ w0;0 þ a0;0du;i

w0;j ¼ w0;0 þ b0;0dv;j

wi;j ¼ wi;0 þ w0;j � w0;0 þ c0;0du;idv;j

8><>: 8i; j� 1: ð3:7Þ
We define afterwards a basis of normalized vectors at vertex P0,0:
~U 0;0 ¼
u0;0;x

u0;0;y

a0;0

0B@
1CA; ~V 0;0 ¼

v0;0;x

v0;0;y

b0;0

0B@
1CA; ~W 0;0 ¼

w0;0;x

w0;0;y

c0;0

0B@
1CA; ð3:8Þ
where subvectors ~u0;0;~v0;0 and ~w0;0 (see Fig. 3.1(b)) are given by:
~u0;0 ¼ M1;0�M0;0

du;1
;

~v0;0 ¼ M0;1�M0;0

dv;1
;

~w0;0 ¼ M1;1þM0;0�M0;1�M1;0

du;1dv;1
:

8>>><>>>: ð3:9Þ
Vector family (3.9) is not linearly independent, as ~u0;0;~v0;0 and ~w0;0 are coplanar.
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From the numerical point of view, the data structure of the code is such that the basis (3.8) is taken as an
intrinsic property of the node that is considered, while the coordinates of Mi,j expressed in this basis-that is,
(du,i,dv,j) – turn into properties of the element to which the control point belongs. For each node,
(w0,0,a0,0,b0,0,c0,0) are the solved unknowns of the problem.

3.1.2. Formulation

We suppose that domain D is decomposed into NE quadrilateral cells parameterized with a Bézier
approach. We suppose also that all nodes of the mesh are numbered from 1 to Nnodes. Let us consider now
the element of index K, 1 6 K 6 NE (see Fig. 3.2). We define IK as the ensemble that contains the four indices
of the nodes belonging to EK:IK = {i1, i2, i3, i4}. The labelling of the nodes is done counterclockwisely as indi-
cated on the figure.

The basis (3.8) is written at each vertex: Using (2.4), the Bézier parameterization of P = (x,y,w) on element
EK can be rewritten as:
P ðs; tÞ ¼
X4

k¼1

eP ik ðs; tÞ ¼
X4

i¼1

~xik ðs; tÞ
~yik ðs; tÞ
~wik ðs; tÞ

0B@
1CA; ð3:10Þ
where index i denotes vertex i. The four components eP iare given by:
eP i1ðs; tÞ ¼ ð1� sÞ2ð1� tÞ2½ð1þ 2sÞð1þ 2tÞP i1 þ 3sð1þ 2tÞdu;i1 U i1

þ3tð1þ 2sÞdv;i1 V i1 þ 9stdu;i1 dv;i1 W i1 �;eP i2ðs; tÞ ¼ s2ð1� tÞ2½ð3� 2sÞð1þ 2tÞP i2 þ 3ð1� sÞð1þ 2tÞdu;i2 U i2

þ3tð3� 2sÞdv;i2 V i2 þ 9ð1� sÞtdu;i2 dv;i2 W i2 �;eP i3ðs; tÞ ¼ s2t2½ð3� 2sÞð3� 2tÞP i3 þ 3ð1� sÞð3� 2tÞdu;i3 Ui3

þ3ð3� 2sÞð1� tÞdv;i3 V i3 þ 9ð1� sÞð1� tÞdu;i3 dv;i3 W i3 �;eP i4ðs; tÞ ¼ ð1� sÞ2t2½ð1þ 2sÞð3� 2tÞP i4 þ 3sð3� 2tÞdu;i4 Ui4

þ3ð1þ 2sÞð1� tÞdv;i4 V i4 þ 9sð1� tÞdu;i4 dv;i4 W i4 �;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð3:11Þ
Each of the ðeP iÞ detailed in (3.11) can be set into the general form:
eP iðs; tÞ ¼ bi;1jKðs; tÞP i þ bi;2jKðs; tÞU i þ bi;3jKðs; tÞV i þ bi;4jKðs; tÞW i; ð3:12Þ
Fig. 3.2. Labelling of nodes and vector basis on element EK.
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where bi,jjK(s, t) is the shape function related to degree of freedom j at node i and restricted to element EK. The
global shape function for dof j of node i is:
bi;j ¼
[
K

bi;j

��
K

ð3:13Þ
with bi,jjK(s, t) = 0 "j if node i does not belong to the element EK

3.2. The finite element method

Using the space discretization of D detailed in Section 3.1.2, we illustrate the different stages of the finite
element method considering the problem defined below:
Dw ¼ S on D;

rw �~n ¼ 0 on oD:

�
ð3:14Þ
The standard procedure described in this section can be applied to other types of equations.

3.2.1. Weak form of the problem

The weak form of (3.14) provides an equivalent form of the problem:
ð3:14Þ ()
R

D f Dwdr ¼
R

D fSdr

rw �~n ¼ 0

�
8f 2 H 1ðDÞ ð3:15Þ
with f a ‘‘test function” belonging to the Sobolev space of functions vanishing at the boundaries and whose
derivatives are integrable. The order of derivatives can be lowered through integration by parts; one can show
that:
 Z

D
f Dwdr ¼ �

Z
D
rf � rwdrþ

Z
oD

frw �~ndl: ð3:16Þ
Taking advantage of the boundary condition, last term in (3.16) is 0, leading to:Z Z

ð3:14Þ () �

D
rf � rwdr ¼

D
fSdr: ð3:17Þ
Problem (3.17) cannot be solved in a general manner. Instead, we want (3.17) to be true for a limited num-
ber of functions f. The Bubnow–Galerkin approach (Hirsch [20]) consists in taking the shape functions as the
test functions. This method is a straightforward way to get a closed system with as many equations as
unknowns.

3.2.2. The assemble stage

We have: D =
S

KDK, where DK is the subdomain of (O,ex,ey) associated with the element EK. Inte-
grals in (3.17) are evaluated for each EK separately, requiring a change of variables to display the Bézier
parameterization. Let U be the diffeomorphism from DK into the reference square element [0;1]2 and
defined as:
U : DK ! ½0; 1�2;
ðx; yÞ7!s; t:

ð3:18Þ
The Jacobian matrix and determinant of U,JU and J, respectively, are given by:
JU ¼
ox
os

ox
ot

oy
os

oy
ot

" #
and J ¼ ox

os
oy
ot
� ox

ot
oy
os
:

We write b�i;j the expression of the shape function bi,j defined in (3.13) as a function of (x,y). Using:
wðx; yÞ ¼
X
i2IK

16j64

wi;jb
�
i;jðx; yÞ;
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(3.17) yields:
�
Z

DK

X
i2IK

16j64

wi;jrb�i;j � rb�k;l dxdy ¼
Z

DK

b�k;lS dxdy ð3:19Þ
or, switching to the parameter space:
�
X
i2IK

16j64

wi;j

Z
½0;1�2

trbi;j

� ��
K
� JU�1Þ � ðtrbk;ljK � JU�1Þ Jj jdsdt ¼

Z
½0;1�2

bk;ljKS Jj jdsdt; ð3:20Þ" #

where JU�1 , the jacobian matrix of the reciprocal function U�1, is given by: JU�1 ¼ 1

J

oy
ot � ox

ot

� oy
os

ox
os

ðJU�1 JU ¼ Id,
the identity matrix). (3.20) can be rewritten under the following matrix form:
X

i2IK
16j64

AK
k;l;i;jwi;j ¼ LK

k;l: ð3:21Þ
We sort the degrees of freedom of the system in a list so that dof l of node k ranks at position m of the list, and
dof j of node i at position n. The list contains therefore Ndof values. (3.21) is equivalent to:
XNdof

n¼1

AK
m;nwn ¼ LK

m: ð3:22Þ
Integrals are evaluated by means of a Gauss quadrature:
eAK
m;n ¼

XNG

p;q¼1

xpxqAK
m;nðsp; tqÞ;

eLK
m ¼

XNG

p¼1

xpLK
mðsp; tpÞ:

ð3:23Þ
NG is the order of the Gauss quadrature into both directions s and t. xp,xq stand for the Gauss weights and
sp, tq the Gauss points. Due to the cubic degree of the Bernstein polynomials, one must have NG P 4. Finally,
the procedure is performed over all elements, yielding the following linear system:
XNdof

n¼1

eAm;nwn ¼ eLm; with

eAm;n ¼
P
K

eAK
m;n;eLm ¼

P
K

eLK
m:

8><>: ð3:24Þ
eA is the ‘‘stiffness matrix ‘‘, and eL the ‘‘load vector” (names are given with reference to the field of structural
analysis from which the finite element method originates).
3.3. ‘‘h”-refinement and constrained degrees of freedom

The ‘‘h”-refinement technique consists in the addition of extra nodes either at the beginning of the simula-
tion (simple refinement) or during the simulation itself (adaptive mesh) by subdividing initial element cells
(ref). It aims at increasing the accuracy of the space discretization in areas of the computational domain where
space scales are insufficiently resolved.
3.3.1. Refining a Bézier patch

We illustrate the refining procedure on Fig. 3.3. The surface labelled S2 – the ‘‘father” surface – is subdivided
into subsurfaces S01;S

0
2;S

0
3;S

0
4 through two cutting edges whose equations are P(s = k, t) and P(s, t = l) respec-

tively, as indicated on the figure; (k,l) 2 [0;1]2 are arbitrary constants chosen by the user. Doing this, five nodes
(Q1,Q2,Q3,Q4 and Q5) are generated. One interesting feature is that the new surfaces ðS0iÞ are also Bézier sur-
faces whose coefficients and vector basis can be calculated from the characteristics of the father surface S2.



Fig. 3.3. Refinement of a Bézier surface. (a) Initial surface S2, delimited by vertices P0,0,P3,0,P3,3 and P0,3, is subdivided into S01;S
0
2;S

0
3 and

S04. (b) to refine S01, S1 is refined first so that Q4 is no longer a constrained node. Open circles are the new nodes created at the end of one
refinement stage.
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Let’s consider for example point Q5, whose local coordinates are (s5, t5) = (k,l). Using S2 parameterization,
we compute the parametric derivatives at Q5:
oP
os

� �
Q5

;
oP
ot

� �
Q5

;
o

2P
osot

� �
Q5

: ð3:25Þ
Reminding that M is the projection of P on (x,y), we define the following lengths:
lu;Q5
¼ oM

os

� �
Q5

�����
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
os

� �2

Q5

þ oy
os

� �2

Q5

s
; lv;Q ¼

oM
ot

� �
Q5

�����
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
ot

� �2

Q

þ oy
ot

� �2

Q

s
; lw;Q5

¼ lu;Q5
lv;Q5

:

ð3:26Þ

The vector basis defined in (3.8) and corresponding to node Q5 writes:
U Q5
¼ 1

3lu;Q5

oP
os

� �
Q5

; V Q5
¼ 1

3lv;Q5

oP
ot

� �
Q5

; W Q5
¼ 1

9lw;Q5

o
2P

osot

� �
Q5

ð3:27Þ
and unit subvectors detailed in (3.9) are:
~uQ5
¼ 1

3lu;Q5

oM
os

� �
Q5

; ~vQ5
¼ 1

3lv;Q5

oM
ot

� �
Q5

; ~wQ5
¼ 1

9lw;Q5

o2M
osot

� �
Q5

: ð3:28Þ
We now compute the Bézier coefficients which must be calculated for each subsurface to which Q5 belongs, in
this case S01;S

0
2;S

0
3 and S04. Let’s suppose that subsurface S0i is considered. With respect to the labelling on

Fig. 3.2, Q5 corresponds to vertex j (1 6 j 6 4) of S0i. We denote di
u;Q5

; di
v;Q5
; di

w;Q5
the Bézier coefficients corre-

sponding to directions u, v and w on the subsurface S0i. These coefficients are given by:
di
u;Q5
¼ ruðjÞkuðiÞlu;Q5

; di
v;Q5
¼ rvðjÞkvðiÞlv;Q5

; di
w;Q5
¼ ruðjÞrvðjÞdi

u;Q5
di

v;Q5
ð3:29Þ
(3.29) calls upon some extra functions depending on i and j. The sign functions ru and rv give the sign of the
Bézier coefficients, i.e. the control points coordinates with regards to the unit vectors, and depend on the ver-
tex index j (Fig. 3.2) as follows:
ruð1Þ ¼ 1; ruð2Þ ¼ �1; ruð3Þ ¼ �1; ruð4Þ ¼ 1;

rvð1Þ ¼ 1; rvð2Þ ¼ 1; rvð3Þ ¼ �1; rvð4Þ ¼ �1:
ð3:30Þ
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The ku and kv functions account for the size change from the father surface to the subsurfaces. They depend
only on the index i of the subsurface and on (k,l), but not on the vertex index j. They are given in Table 1.

The same procedure applies for nodes Q1,Q2,Q3,Q4.

3.3.2. Constrained degrees of freedom and connectivity matrix

At the end of one refinement stage, some of the created nodes may not provide additional degrees of free-
dom to the problem. We move back to Fig. 3.3 to illustrate this particular situation. In order to ensure G1

continuity between S1, S01 and S04, values along edges P0,0Q4 or Q4P0,3 (referring to the local description of
surfaces S01 or S04, respectively) must be consistent with that obtained from S1 with regards to the tangent plane
condition. Therefore, values at Q4 must be prescribed by values at P0,0 and P0,3. Node Q4 and corresponding
degrees of freedom are said to be constrained.

The refinement follows a basic rule based on the algorithm described in Demkowicz et al. [21]: at the end of
a refinement stage, any additional node cannot have a constrained node as a parent; if necessary, neighbours
of any refined element are refined first to eliminate undesired constrained nodes (Fig. 3.3(b)). This arbitrary
choice limits complexity for the handling of constrained nodes during the assemble stage (see next paragraph).
It helps also to reach at a faster rate more extra-dof, as – by definition – constrained nodes are useless in
increasing the accuracy.

The assemble stage needs special care when constrained nodes are found. If (3.22) is performed on element
K which contains constrained nodes, constrained degrees of freedom in w are removed and replaced in a new
vector w0 by the parent dof (by construction one of the parents necessarily belongs to element K). Formally the
operation writes as a matrix product:
Table
Size co
initial

Sub-su

ku(i)
kv(i)
w ¼ Cw0: ð3:31Þ

The switch between w and w0 is done through the connectivity matrix C whose coefficients are provided by the
Bézier parameterization.

We illustrate the procedure through the following example. We consider the subsurface S01 on Fig. 3.3. We
suppose that the only constrained node is Q4. Contributions of each node of the father patch can be decom-
posed as in (3.10) and (3.11). The local coordinates of Q4 being (s = 0, t = l). It is easy to notice that only eP 0;0

and eP 0;3 contribute to the parametric derivatives.
Using (3.27), and after some algebra, one obtains:
wQ4
¼ ð1� lÞ2½ð1þ 2lÞwP 0;0

þ 3ldv;P 0;0
bP 0;0
�;

þ l2½ð3� 2lÞwP 0;0
þ 3ð1� lÞdv;P 0;3

bP 0;3
�;

aQ4
¼ 1

3lu;Q4

½3ð1� lÞ2ð1þ 2lÞdu;P 0;0
aP 0;0
þ 9ldw;P 0;0

cP 0;0

þ 3l2ð3� 2lÞdu;P 0;3
aP 0;3
þ 9ð1� lÞdw;P 0;3

cP 0;3
�;

bQ4
¼ 1

3lv;Q4

½2lðl� 4ÞwP 0;3
þ 3ð1� 6lþ l2Þdv;P 0;3

bP 0;3

þ 6lð1� lÞwP 0;3
þ 3lð1� lÞ dv;P 0;3

bP 0;3
�;

cQ4
¼ 1

9lw;Q4

½�18lð1� lÞdu;P 0;0
aP 0;0
� 9ð1� lÞð3l� 1Þdw;P 0;0

cP 0;0

þ 18lð1� lÞdu;P 0;3
aP 0;3
þ 9lð�3lþ 2Þdw;P 0;0

cP 0;3
�:

ð3:32Þ
1
efficients necessary to switch from the father surface to the subsurfaces; (k,l) are the (s, t) coordinates of the dividing edges on the
patch (see Fig. 3.3)

rface index i 1 2 3 4

k 1 � k 1 � k k
l l 1 � l 1 � l
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So that dof of Q5 depend linearly on the dof of the father nodes P0,0 and P0,3. Vector w contains all the dof on
S01: nodes P0,0, Q1, Q5 and Q4 (we give w under transposed shape for writing convenience):
Fig. 4.
radii in
w¼t wP 0;0
aP 0;0

bP 0;0
cP 0;0

wQ1
aQ1

bQ1
cQ1

wQ5
aQ5

bQ5
cQ5

wQ4
aQ4

bQ4
cQ4

� �
:

The dof of the first father node P0,0 are already present in w; dof of node Q4 are replaced by dof of node P0,3,
forming the new vector w0.
w0¼t wP 0;0
aP 0;0

bP 0;0
cP 0;0

wQ1
aQ1

bQ1
cQ1

wQ5
aQ5

bQ5
cQ5

wP 0;3
aP 0;3

bP 0;3
cP 0;3

� �
:

The matrix C is basically the identity matrix, but rows of C corresponding to the dof of Q4 (here rows from 13
to 16) are reset and filled in with the right-hand side coefficients in (3.32) so that (3.31) is achieved.

The local stiffness matrix and load vector are modified and (3.22) is rewritten as:
A0Kw0 ¼ L0K ; with A0K¼tCAKC and L0K¼tCLK : ð3:33Þ
4. Simulations

4.1. Numerical toolbox

4.1.1. Geometry and boundary conditions

Inside a tokamak, the general shape of the plasma is that of a torus of major radius RO0 (Fig. 4.1). The
meridian section – also named poloidal section – is characterized by an ellipticity e = b/a, where a and b
are the horizontal and vertical minor radii respectively. The section boundary is either circular or given via
an analytical solution of the Soloviev equilibrium problem to allow D-shaped configurations (see Section
4.2, equation (4.16)). We define the aspect ratio as e ¼ a=RO0 . For the need of some simulations (see current
hole, Section 4.3), the configuration may be that of a cylinder, which can be considered as a degenerated torus
with RO0 ! þ1; in this case, e = 0.

A point in the plasma is usually located with respect to a toroidal frame of reference ð~ex;~ey ;~e/Þ: the Carte-
sian coordinates (R,Z) apply for the poloidal section while the toroidal direction is labelled with angle /. R is
the distance from the revolution axis of the torus (see Fig. 4.1). Further on the space coordinates (R,Z) are
changed into dimensionless coordinates (x,y) centered in the plasma:
x ¼ R� RO0

a
¼ R=RO0 � 1

e
; x 2 ½�1;þ1�; y ¼ Z

a
; y 2 � b

a
;
b
a

	 

: ð4:1Þ
The MHD equations are scaled with the major radius RO.
For all simulations, walls are supposed fixed and perfectly conductible: variables are consequently set to 0

at boundaries.
1. Toroidal configuration of a tokamak. RO0 ¼ OO0 stands for the big radius of the torus, a and b the horizontal and vertical minor
the poloidal section./ is the toroidal angle.
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4.1.2. Time-stepping

Both steady equilibrium and unstationary non-linear MHD equations are tested in the present paper (Sec-
tions 4.2 and 4.3).

A wide range of time scales (with several orders of magnitude) are found in time-dependent MHD prob-
lems, from the Alfvèn time to the equilibrium time. This may lead to quite prohibitive computing times. In
order to surmount this difficulty, the time-stepping is handled with a fully implicit Crank–Nicholson approach
which makes it possible to use large time-steps. We write the system of equations under the following general
form:
oA
ot
¼ Bðn; tÞ: ð4:2Þ
A and B are vectors of length l, where l is the number of independent equations. n = (ni) are the physical unk-
nows of the problem. A and B can depend non-linearly on n and t. Treated via the Crank–Nicholson scheme,
(4.2) becomes:
dAn ¼ Anþ1 � An ¼ dt
2
½Bnþ1 þ Bn�; ð4:3Þ
where dt is the time-step, and superscript n denotes a value at time iteration n. Implicity of the time scheme
coupled to non-linearity of A and B lead usually to performing an additional sub-iterative method. This can be
avoided through a linearization technique which offers the advantage of keeping the second-order accuracy in
time, as proposed by Beam and Warming (Hirsch [20]). The key point is the linearization at first-order of A

and B with respect to n:
Hnþ1 � Hn ¼ Hðnnþ1; tnþ1Þ � Hðnn; tnÞ � oH
on

� �n

� dnn ð4:4Þ
with H = A or B, dnn = nn+1 � nn, and oH
on

� �n
the jacobian matrix of H with respect to variables n. Scheme (4.3)

writes finally:
oA
on

� �n

� 1

2
dt

oB
on

� �n	 

� dnn ¼ dtBn: ð4:5Þ
The system (4.4) is solved via the solvers MUMPS (Amestoy et al. [22]) or PaStiX (Hénon et al. [23]). These
parallel libraries are specially adapted to handle large sparse matrices as those which are intrinsically gener-
ated by the finite element discretizations.
4.1.3. Meshing

From a general standpoint, the meshes used in this paper are polar grids. We denote Nr the number of
points into the radial direction, while Nh is the number of points into the polar direction. The grid shows
Nr concentric closed contours (the center is included in this count), and Nh radial line segments. The polar
coordinates (r,h) of node Mi writes:
Mi ¼
ri cos hi

ri sin hi

� �
: ð4:6Þ
Let’s look at a Bézier cell. In the case of a circular section, we identify local and global coordinates by assum-
ing r = f(t), h = hs), where (s, t) are the surface parameters. Thus:
oM
os
¼ f ðtÞh0ðsÞ

� sin h

cos h

� �
;

oM
ot
¼ f 0ðtÞ

cos h

sin h

� �
;

o2M
osot

¼ h0ðsÞf 0ðtÞ
� sin h

cos h

� �
: ð4:7Þ
This writing displays directly the unit subvectors defined in (3.9) that are required by the Bézier description:
~u ¼ ~w ¼
� sin h

cos h

� �
; ~v ¼

cos h

sin h

� �
: ð4:8Þ
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For a circular point distribution (see Fig. 4.2), the curves between Mi1 and Mi4, or Mi2 and Mi3, are line
segments, while Mi1Mi2 and Mi3Mi4 are circle arcs. One requirement here is that r (respectively h) must
be a smooth function of the parameter t (respectively s) in order to avoid distortions of the local
mapping.

The control points of ½Mi1 Mi4 � (or ½Mi2 Mi3 �) line segment are aligned. Setting the Bézier coefficients to:
du;i1 ¼
1

3
Mi4 �Mi1

 ; du;i4 ¼ �
1

3
Mi4 �Mi1

 ;
du;i2 ¼

1

3
Mi3 �Mi2

 ; du;i3 ¼ �
1

3
Mi3 �Mi2

 ; ð4:9Þ
leads to a point on the segment depending linearly on parameter t:
MðtÞ ¼ Mi1 þ ðMi4 �Mi1Þt on bMi1 Mi4c;
MðtÞ ¼ Mi2 þ ðMi3 �Mi2Þt on bMi2 Mi3c:

ð4:10Þ
As a circle arc is analytically defined as the square root of a polynomial, it cannot be decomposed on the
Bernstein basis which can deal only with polynomials of integer degree ranging from 0 to 3. Anyway it can be
approximated with quite a convenient accuracy using the following formulas (Goldapp [24]):
dv;i1 ¼
4

3
tan

Dh
4

� �
; dv;i2 ¼ �

4

3
tan

Dh
4

� �
;

dv;i4 ¼
4

3
tan

Dh
4

� �
; dv;i3 ¼ �

4

3
tan

Dh
4

� �
;

ð4:11Þ
with Dh ¼ hi2 � hi1 ¼ hi3 � hi4 . Let’s consider the circle arc MkMl of radius r, and M a point on its Bézier
approximation. It is shown (Goldapp [24]) that in this case, the relative error dE, defined as:
dE ¼ max
06s61

OM2ðtÞ � r2

r2

���� ���� ð4:12Þ
is equal to:
dE ¼
4

27

sin6 Dh
4

� �
cos2 Dh

4

� � : ð4:13Þ
Fig. 4.2. Definition of a cell for a circular mesh. Please note that here ~wi ¼~ui; i ¼ i1; i2; i3 or i4.
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As an example, one obtains dE�8.5 	 10�6 for Dh = p/4, and dE�3.5 	 10�8 for Dh = p/10. This shows that
the error due to the Bézier approximation is quite acceptable given the range of Dh values, – usually lower than
p/4 – that are used for the simulations.

For the mesh generation and for the sake of simplicity, we apply ks = kt = 1 in condition (3.1) over the
entire grid, which makes the elements Hermite-like; but the ‘‘hermicity” is broken when applying the refining
algorithm. Of course, one could have chosen a pure Bézier distribution instead.

Non-circular meshes are based on the Soloviev solution described in part 4.2 (Huysmans et al. [7]). The
analytical equation of the domain boundary is obtained by fixing w(x,y) = 0 in (4.17). In this case, the bound-
ary is h-dependent, making the expression of r(s, t) more complicated. In one Bézier cell, Mi1 and Mi2 lie on the
jth closed contour, while Mi3 and Mi4 lie on the (j + 1)th contour. The radius function is chosen as follows:
Fig.
rðs; tÞ ¼
X

m

rmvm
j ðtÞeimhðsÞ: ð4:14Þ
vj is a normalized radius defined by: vj (t) = (j � 1 + t)/(Nr � 1). To treat the polar direction, h is chosen to be
a linear function of s : h ¼ hi1 þ sDh. The coefficients rm are obtained by considering elements on the boundary
(j = Nr � 1, t = 1) and adjusting (4.14) to the equation of the Soloviev profile.

The choice of (4.14) allows contours to morph smoothly from Soloviev boundary shape to circles when get-
ting closer to the center (Fig. 4.3(a)). This choice stems from physical observations reporting a similar behav-
iour of the flux surfaces.

Unit vectors and Bézier coefficients are straightforwardly deduced from the parametric derivatives of Mi,
using (4.6) and (4.14)b.

Similarly to the circular grid, the Soloviev mesh is initially generated so that the elements are Hermite-like,
and once again, the refining procedure breaks the hermicity when used.

4.2. Soloviev equilibrium

In this part, the plasma is described by the monofluid ideal magnetohydrodynamics equations under the
assumption of axisymmetry and stationarity. The Grad–Shafranov equation models a plasma equilibrium
where the pressure gradient balances the Lorentz force (Biskamp [25], Friedberg [26], Wesson [27]) and writes
in dimensioned form:
D�~w ¼ � R2 d~p

d~w
þ eF deF

d~w

 !
; with D�~w ¼ R2div

1

R2
grad~w

� �
; ð4:15Þ
where ~w is the magnetic flux taken as a radial coordinate, ~p the pressure and eF ¼ ReB/, with eB/ the toroidal
component of the magnetic field. The Soloviev equilibrium derives from (4.15) when adding conditions (4.16):
4.3. Contour plots in a poloidal section, with k = 0,b/a = 1.4, e = 0.3. (a) the refined grid; (b) magnetic flux w; and (c) ow/ox.
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d~p

d~w
¼ Cst; eF deF

d~w
¼ Cst: ð4:16Þ
The Soloviev equation admits a class of analytical solutions which, under the assumption of ‘‘z = 0” planar
symmetry, can be written under dimensionless form as (Soloviev [28]):
wðx; yÞ ¼ x� 1

2
eð1� x2Þ

� �2

þ 1� 1

4
e2

� �
ð1þ exÞ2 þ kx 1þ 1

2
ex

� �� �
y2

b
a

� �2
: ð4:17Þ
In addition to the ellipticity e, the plasma shape is also controlled here by a triangularity parameter k. (x,y) are
the coordinates in the poloidal plane normalized as described in Section 4.1.1. Setting w(x,y) = 0 in (4.17)
leads to the equation that defines the boundary of the numerical domain.

To test the geometric smoothness of the solutions, it is necessary to avoid a purely Hermite grid (cf Section
4.1.3); to this purpose we chose arbitrarily some elements to refine (Fig. 4.3(a)). Fig. 4.3(b) shows the magnetic
flux w and (c) the components of grad w in the poloidal plane for the special case (k 0, b/a = 1.4, e0.3). From
the regularity of the plotted quantities across the grid – no matter if elements are refined or not – it is clear that
the numerical computation is successful in providing G1 continuity.

We define the error E(w) as the maximum difference encountered over the domain between the analytical
and the computed solutions w. It is shown (Strang & Fix [19]) that the error on the sth derivative of w scales as:
hpþ1�s þ h2pþ2�2m; ð4:18Þ

where h is the characteristic length of one element, p the order of the approximation functions and 2m the
order of the solved equation. In our problem, p = 3 (cubic functions) and the operator D* in (4.15) is sec-
ond-order (leading to 2m = 2). Consequently, E(w) should scale as h4, and E(ow/ox) or E(ow/oy) as h3.

Fig. 4.4 shows E(w) and E(ow/ox) as a function of N = 1/h = Nr � 1, the number of intervals along the
radial direction. The grid is regular.

Numerical results match perfectly the theoretical expectations: cubic elements provide h4-convergence rate
for the magnetic flux (Fig. 4.4(a)), while gradients are approximated by one order of magnitude less
(Fig. 4.4(b)). We carried out similar computations using bi-linear elements; the corresponding error curves
are included on the plots. Consistently with (4.18), convergence rates for linear interpolation are lower than
for cubic elements by two orders of magnitude.

It is noteworthy that for a very course grid (N = 3), Bézier elements give E(w) = 5.56 	 10�2, while linear
elements provide E(w) = 5.66 	 10�1 only. We take advantage here of the ability of Bézier curves to fit the
geometry of the flux surfaces better than linear elements.

4.3. Current hole

In this part, we consider the time-dependent reduced resistive MHD equations (Biskamp [25], Briguglio
et al. [29]). Supposing invariance along the toroidal direction /, the dimensionless non-linear equations write:
4. Accuracy E on (a) w and (b) ow/o x, as a function of the number of radial intervals N. Both figures, drawn with log/log axis, show
rison between linear and cubic elements.



Fig. 4.5. (a) Plot of radial profile for the driven current density given by (4.20), with j1 = 0.2 and j2 = 0.266. r is the radius normalized by
the minor radius a; and (b) corresponding profile of the safety factor q; the dashed vertical line marks the radial location of the ‘‘q =1”

resonant surface.
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ow
ot ¼ ð1þ exÞ½w;u� þ gðJ � J cÞ;
ou
ot ¼ 2e ou

oy xþ ð1þ exÞ½x;u� þ 1
1þex ½w; J � þ mD?x;

J ¼ D�w;

x ¼ D?u;

8>>>><>>>>: ð4:19Þ
three new unknowns are added to w: velocity potential u, toroidal current density J and vorticity x. [�, �] is the
Poisson bracket2, and D* the Grad–Shafranov operator defined in (4.15). D\ is the laplacian restricted to the
poloidal section. g and m stand for the resistivity and the viscosity respectively. The non-ohmic driven current
density Jc sets a constant current profile likely to be perturbed with fluctuations. Attention should be paid on
that in equations (4.19), J does not stand for the real current which is defined as J0 = R J = (1 + ex)J. The
toroidal component of the magnetic field is assumed to be constant (B0) and of leading order compared to
the poloidal component B\.

For the need of further comparisons with analytical work, the geometry is taken cylindrical (e = 0). Notice
that in this case, D* = D\ and the pseudo-current J is equal to the real current as R = 1. Consistently with [30]
we chose the following radial profile for Jc.:
J c ¼ j1ð1� r4Þ � j2ð1� r2Þ8: ð4:20Þ

Fig. 4.5-plots Jc(r) for j1 = 0.2 and j2 = 0.266. The profile exhibits a zone of negative current density close to
the axis – namely the ‘‘current hole”-. We take the Grad–Shafranov equilibrium based on current profile (4.20)
as the initial condition for the time-dependent simulations: thus J = Jc at t = 0.

The safety factor q is related to the pitch of the magnetic field lines and corresponds to the poloidal angle
covered by the field line during one toroidal round (Freidberg [26]). For a cylindrical geometry, the safety fac-
tor is given by:
qðrÞ ¼ 2prB0

L0B?
; ð4:21Þ
where L0 is the axial length of the cylinder. From Fig. 4.5(b), one can see that q takes negative values inside a
‘q =1’ surface which includes the current hole itself. The resonant surface corresponds to q = m/n, with the
toroidal wave number n equal to 0 because of the axisymmetry. The m=1 internal kink instability is respon-
sible for sawtooth crashes in tokamaks (Wesson [27]).

Fig. 4.6 shows snapshots of the 3D current profile at different stages of the internal kink evolution. The
current surface, initially axisymmetric (Fig. 4.6(a)), remains identical during the linear stage in the early part
of the transient, where non-linear effects are still negligible. At the end of this stage, the profile is progressively
deformed: current density is expelled outward from the central axis, generating a current sheet at the resonant
surface (Fig. 4.6(b)). At the end of the crash, the profile close to the center is flattened (Fig. 4.6(c)), leaving
th the Poisson bracket defined as: ½a; b� ¼ oa
ox

ob
oy � oa

oy
ob
ox.



Fig. 4.6. Internal resistive kink in a cylindrical tokamak, with g = 10�5 and m = 10�6. The figure plots current profile as a 3D surface
clipped for clarity. The cylindrical section below the current surface displays isocontours of velocity potential u; (a) refined grid; (b) Initial
axisymmetric current profile given in Fig. 4.5, t = 0; (c) t = 5.9 	 103 sA; and (d)t = 6.9 	 103sA. (sA is the Alfvén time).

7442 O. Czarny, G. Huysmans / Journal of Computational Physics 227 (2008) 7423–7445
only residual fluctuations around J = 0. The semi-log plot of the plasma kinetic energy (Fig. 4.7) clearly shows
the linear growth stage of the kink mode, overtaken by non-linearities close to t = 6 	 103.

As a validation test, we measured the growth rate c of the m = 1 mode during the linear stage. Fig. 4.8 plots
c as a function of resistivity g. The behaviour of the curve when g tends to 0 is asymptotically that of g1/3, as
obtained in [30]. This result is in accordance with theoretical expectations (Wesson [27] or Ara et al. [31]): it is
shown that an approximation of the growth rate is s�2=3

H s�1=3
R , where sH is the Alfvén time, sR ¼ ðl0r2

0=g) the
resistive diffusion time, and r0 the radial location of the ‘q =1’ surface. This makes clear the 1/3-dependence
on resistivity.

We define eEðcÞ as the error between c measured for N intervals and its asymptotic value when N tends to
1. Fig. 4.9(a)) shows that eEðcÞ varies as h2 for linear interpolation while Bézier elements provide h6 conver-
gence. Bézier technique proves to enhance accuracy even on evaluating growth rates, which are dynamic
quantities.

At that point, one question that comes up is the computational cost required to reach a given accuracy. The
CPU time required per iteration to reach a particular eEðcÞ is given on Fig. 4.9(b)). tCPU � t�3 (Bézier) and
tCPU � t�1 (linear). From the figure, one can see that when both curves are defined for one value of eEðcÞ,
Bézier elements are cheaper in giving this error level.

The current sheet thickness scales as g1/3 (Biskamp [25]), which means that at low resistivities, the thickness
of the resistive layer is quite small. Through mesh adaptivity, it is possible to increase the mesh density around
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Fig. 4.9. Comparison between linear and cubic elements: (a) error on growth rate c as a function of N; and (b) CPU time per iteration vs.
error on growth rate.
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the current layer during the simulation itself, as depicted on Fig. 4.10. The figure shows a wave of current den-
sity propagating toward the resonant surface. When the current gradient is strong enough, a secondary insta-
bility grows inside the layer under the shape of a tearing bubble, which is progressively swept away into the
longitudinal direction (camber line) of the sheet. The occurrence of a’tearing’ bubble is consistent with previ-
ous results of Biskamp [32] who derives a rough criterion from linear stability considerations: the aspect ratio
A being defined as the length of the sheet divided by its thickness, the layer becomes unstable if A > 100
approximately. Though we report instability for values of A lower than 100, probably because for the consid-
ered regimes, non-linearities are strong enough to upset linear stability predictions [32].



Fig. 4.10. Close-up around the resonant surface, g = 10�7. The mesh density is increased to allow a sufficient description of the tearing
mode that occurs in the current sheet.
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5. Conclusion

The present paper describes a finite element method using Bézier rectangles. This development appeared as
a necessary step to the enhancement of the code JOREK, adapted to realistic tokamak configurations and pre-
viously based on linear interpolating functions. The switch to bicubic Bernstein polynomials provides a
fourth-order accuracy in space while requiring four degrees of freedom per node and per physical variable
as in the Hermite approach. Nonetheless, the method provides continuity of the gradients between the ele-
ments, a large flexibility for the element shapes and allows for mesh refinements.

The method was applied to the solving of the reduced resistive non-linear MHD equations. Two axisym-
metric cases have been studied: the academic Soloviev equilibrium in a torus, and the time-dependent problem
of a current hole in a cylindrical geometry. In all cases, results are consistent with theoretical expectations. For
the current hole experiment, we report a sixth order space accuracy in the measurements of the growth rates –
while of only second-order with linear interpolation. Mesh refinement allows the tracking of secondary tearing
modes in the current sheet resulting from the internal kink crash.

The 2D discretisation described above can easily be extended to 3D toroidal geometry by using a Fourier
expansion in the periodic direction. Alternatively an extension of the Bézier description to 3 space coordinates
can also be envisaged. The next step will be the implementation of the full compressible MHD model and the
construction of a Bézier finite element mesh aligned with the magnetic geometry of plasmas with an X-point.
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